1	Oxidation of Primary Alcohol	H ₃ COH	Jones Reagent or $K_2Cr_2O_7, H^+$	
2	Oxidation of Aldehydes	CH3	Jones or $K_2 Cr_2 O_7, H^+$	
3	Oxidative Cleavage of Aryl Benzenes		KMnO ₄ H ₂ O, 95 oC	
4	Oxidative Cleavage of Alkenes	H ₃ C CH ₃ H H ₃ C	$\frac{\text{KMnO}_4}{\text{Acid}, \Delta}$	
5	Oxidative Cleavage of Alkenes	H ₃ C H ₃ C H ₃ C CH ₃	1. O ₃	
6	Oxidative Cleavage of Alkenes	H ₃ C H ₃ C H ₃ C H ₃ C	1. O ₃	
7	Hydrolysis of Nitriles (Base Catalyzed)	N	1. NaOH, H ₂ O, Δ 2. H ₃ O ⁺	
8	Hydrolysis of Nitriles (Acid Catalyzed)	N	$\xrightarrow{H_2SO_4}$	

9	Carboxylation of Grignard Reagents	Mg—Br H ₃ C CH ₃	1. CO ₂	
10	Carboxylation of Grignard Reagents		$\frac{1. \text{ NaCN, DMF}}{2. \text{ H}_2\text{SO}_4, \text{ H}_2\text{O}}$	
11	Carboxylation of Grignard Reagents	H ₃ C H ₃ C Cl	1.Mg, THF 2. CO ₂ 3. H ⁺	
12	Prep. Of Nitriles from Alkyl halides/ good L.G.	H ₃ C CH ₃	MaCN DMSO	
13	Prep. Of Nitriles from Carbonyls		HCN >	
14	Prep. Of Nitriles from Amides	NH ₂	$\frac{\text{SOCl}_2, \text{ benzene}}{80 \text{ oC}}$	
15	LAH Red'n of Nitriles	H ₃ C	$\frac{1. \text{ LAH, ether}}{2. \text{ H}_3 \text{O}^+}$	
16	Grignard Rxn of Nitriles	H ₃ C— <u></u> N	1. PhMgBr, THF	

17	Formation of Acid Chlorides from Carboxylic Acids	ОН	CHCl ₃	
18	Formation of Acid Anhydrides from -COOH	2 О Н ₃ С ОН	800 ∞C	
19	Formation of Esters from - COOH (S _N 2)		CH ₃ I	
20	Fischer Esterification (1985—Nobel prize 1902)	Н ₃ С ОН	H ₃ C OH HCl	
21	Formation of Amides from - COOH	Ph H_2 H_3C H_3 H_2 H_2 H_3C H_2	~~~>	
22	Formation of Amides from – COOH (methyl ester protecting group)		СН ₃ ОН, НСІ ————————————————————————————————————	
23	Formation of Amides from – COOH (Boc protecting group)	H ₃ C OH NH ₂	Boc ₂ O, TEA CH ₂ Cl ₂	
24	Peptide Formation	Ph O CI NH ₃ CH ₃ O O O O O O O O O O O O O O O O O O O	DCC >	

25	Deprotection (methyl ester removal)	CH ₃ O H ₃ C NH BOC NH O CH ₃	LiOH, H ₂ O	
26	Deprotection (Boc removal)	H ₃ C NH OH BOC NH O	TFA	
27	Formation of Alcohols	ОН	$\begin{array}{c} 1. \text{ LAH} \\ \hline 2. \text{ H}_3 \text{O}^+ \end{array} $	
28	Prep. Of Acid Halides	R OH	Pyr SOCl ₂	
29	Prep of Acid Halides	R OH	PBr ₃ Ether	
30	Hydrolysis of Acid Halides	H ₃ C CI	H ₂ O >	
31	Formation of anhydrides from acid halides	$CI + O_{Ph} O^{-} Na^{+}$	$\xrightarrow{\text{ether}}$ > 25 ∞	
32	Formation of Esters from acid halides (alcoholysis)	О СІ + ОН Н ₃ С СН ₃	Pyr.	

		2	NH ₂	1
33	Formation of Amides	H ₃ C CI		
34	Hydride Red'n of Acid Halides	CI	1. LAH 2. H ₃ O ⁺	
35	Hydride Red'n of Acid Halides	CI	Li(t-OBu) ₃ AlH	
36	Grignard Reagents with Acid Chlorides	H ₃ C	1.H ₂ C/Mg ^{Br} ,THF 2. Dilute HCl	
37	Gilman Reagent with Acid Chlorides	H ₃ C CI	(CH ₃) ₂ CuLi Ether	
38	Friedel-Crafts Acylation of Acid Chlorides	CH3	H ₃ C Cl >	
39	Prep of Acid Anhydrides	H_3C CI H O Na^+	ether >	
40	Prep of Cyclic Acid Anhydrides	но он	<u>Δ</u>	

		0 	Δ	
41	Prep of Cyclic Acid Anhydrides	ОН	>	
42	Hydrolysis of Acid Anhydrides	H ₃ C O CH ₃	H ₂ O >	
43	Ester Formation from Anhydrides	ОН	NaOH, H ₂ O	
44	Amide formation from Anhydrides	HO NH2	NaOH, H ₂ O	
45	Friedel-Crafts Acylation of Anhydrides		H ₃ C O CH ₃ AlCl ₃	
46	Friedel-Crafts Acylation of Cyclic Anhydrides		AlCl ₃	
47	Prep of Esters	H ₃ C CI	Н ₃ С́ОН	+ HCl

48	Prep of Esters	ОН	CH ₃ OH, H ⁺ ≈	
49	Prep of Esters		Н₃С́ОН, Н⁺ →	
50	Hydrolysis of esters (base catalyzed) (saponification)	HO BOC NH CH ₃	$\frac{1. \text{ LiOH, H}_2\text{O}}{2. \text{ H}_3\text{O}^+}$	
51	Hydrolysis of Esters (Acid Catalyzed)	H ₃ C	H ₃ O ⁺	
52	Transester- ification of Esters	О О СН ₃	CH ₃ OH, H ⁺ , OH [−]	
53	Amide formation from Esters		H ₃ C NH ₂ >	
54	Alcohol Formation from Esters	H_3C H_3C O H_3C O H_3C O H_3C O H_3C O H_3C O H_3	$\frac{1. \text{ LAH}}{2. \text{ H}_3 \text{O}^+} >$	

55	Alcohol Formation from Esters		1. PhMgBr, THF 2. Dilute HCl	
56	Selective Red'n of Esters	Ph O CH ₃ BOC NH	1. DIBAL-H, -78 ℃ 2. H ₃ O ⁺	
57	Formation of Lactones from Esters	НО ОН	H ⁺	
58	Prep of Amides	H ₃ C OH	$\frac{H_3C}{\Delta}$ NH ₂	
59	Prep of Amides	Ph Cl	2 Equivalents	
60	Prep of Amides		H ₃ C NH CH ₃	
61	Hydrolysis of Amides	H ₃ C H ₃ C H ₃ C H ₃ C H ₃ C CH ₃ CH ₃ CH ₃ CH ₃	$\frac{\text{H}_{3}\text{O}^{+} \text{ or } \text{OH}^{-}}{\Delta} >$	
62	Red'n of Amides	O CH ₃ NH CH ₃	$\begin{array}{c} 1. \text{ LAH} \\ \hline 2. \text{ H}_3 \text{O}^+ \end{array} $	
63	Formation of Lactams from Amides	H ₂ NOH	<u>Δ</u>	

64	Acid Catalyzed keto-enol tautomerization	CH3	HCl	
65	Base Catalyzed keto-enol tautomerization	CH3	OH⁻ ◄───>	
66	Acidic α-halogenation of CHOs/ketones	CH3	H^+, Br_2 ether	
67	Basic α- halogenation of CHOs/ketones	CH3	OH ⁻ , Br ₂ ether	
68	α-halogenation of carb. Acids	Н ₃ СОН	$\frac{1. \operatorname{Br}_{2}, \operatorname{PBr}_{3}}{2. \operatorname{H}_{2} \mathrm{O}}$	
69	LDA Formation	H_3C CH_3 H_3C CH_3 H_3C CH_3	H ₃ C	
70	Rxn of Enolates	o	<u>1. LDA, THF, -78 ∞C</u> 2. _{H3} C → Br	